Python Nested Dictionary
A dictionary can contain another dictionary, which in turn can contain dictionaries themselves, and so on to arbitrary depth. This is known as nested dictionary.
Nested dictionaries are one of many ways to represent structured information (similar to ‘records’ or ‘structs’ in other languages).
Create a Nested Dictionary
A nested dictionary is created the same way a normal dictionary is created. The only difference is that each value is another dictionary.
Let’s build a dictionary that stores employee record.
D = {'emp1': {'name': 'Bob', 'job': 'Mgr'},
'emp2': {'name': 'Kim', 'job': 'Dev'},
'emp3': {'name': 'Sam', 'job': 'Dev'}}
The dict() Constructor
There are several ways to create a nested dictionary using a type constructor called dict().
To create a nested dictionary, simply pass dictionary key:value pair as keyword arguments to dict()
Constructor.
D = dict(emp1 = {'name': 'Bob', 'job': 'Mgr'},
emp2 = {'name': 'Kim', 'job': 'Dev'},
emp3 = {'name': 'Sam', 'job': 'Dev'})
print(D)
# Prints {'emp1': {'name': 'Bob', 'job': 'Mgr'},
# 'emp2': {'name': 'Kim', 'job': 'Dev'},
# 'emp3': {'name': 'Sam', 'job': 'Dev'}}
You can use dict() function along with the zip() function, to combine separate lists of keys and values obtained dynamically at runtime.
IDs = ['emp1','emp2','emp3']
EmpInfo = [{'name': 'Bob', 'job': 'Mgr'},
{'name': 'Kim', 'job': 'Dev'},
{'name': 'Sam', 'job': 'Dev'}]
D = dict(zip(IDs, EmpInfo))
print(D)
# Prints {'emp1': {'name': 'Bob', 'job': 'Mgr'},
# 'emp2': {'name': 'Kim', 'job': 'Dev'},
# 'emp3': {'name': 'Sam', 'job': 'Dev'}}
You’ll often want to create a dictionary with default values for each key. The fromkeys() method offers a way to do this.
IDs = ['emp1','emp2','emp3']
Defaults = {'name': '', 'job': ''}
D = dict.fromkeys(IDs, Defaults)
print(D)
# Prints {'emp1': {'name': '', 'job': ''},
# 'emp2': {'name': '', 'job': ''},
# 'emp3': {'name': '', 'job': ''}}
Access Nested Dictionary Items
You can access individual items in a nested dictionary by specifying key in multiple square brackets.
D = {'emp1': {'name': 'Bob', 'job': 'Mgr'},
'emp2': {'name': 'Kim', 'job': 'Dev'},
'emp3': {'name': 'Sam', 'job': 'Dev'}}
print(D['emp1']['name'])
# Prints Bob
print(D['emp2']['job'])
# Prints Dev
If you refer to a key that is not in the nested dictionary, an exception is raised.
print(D['emp1']['salary'])
# Triggers KeyError: 'salary'
To avoid such exception, you can use the special dictionary get() method. This method returns the value for key if key is in the dictionary, else None
, so that this method never raises a KeyError
.
# key present
print(D['emp1'].get('name'))
# Prints Bob
# key absent
print(D['emp1'].get('salary'))
# PrintsNone
Change Nested Dictionary Items
To change the value of a specific item in a nested dictionary, refer to its key.
D = {'emp1': {'name': 'Bob', 'job': 'Mgr'},
'emp2': {'name': 'Kim', 'job': 'Dev'},
'emp3': {'name': 'Sam', 'job': 'Dev'}}
D['emp3']['name'] = 'Max'
D['emp3']['job'] = 'Janitor'
print(D['emp3'])
# Prints {'name': 'Max', 'job': 'Janitor'}
Add or Update Nested Dictionary Items
Adding or updating nested dictionary items is easy. Just refer to the item by its key and assign a value. If the key is already present in the dictionary, its value is replaced by the new one.
D = {'emp1': {'name': 'Bob', 'job': 'Mgr'},
'emp2': {'name': 'Kim', 'job': 'Dev'},
'emp3': {'name': 'Sam', 'job': 'Dev'}}
D['emp3'] = {'name': 'Max', 'job': 'Janitor'}
print(D)
# Prints {'emp1': {'name': 'Bob', 'job': 'Mgr'},
# 'emp2': {'name': 'Kim', 'job': 'Dev'},
# 'emp3': {'name': 'Max', 'job': 'Janitor'}}
If the key is new, it is added to the dictionary with its value.
D = {'emp1': {'name': 'Bob', 'job': 'Mgr'},
'emp2': {'name': 'Kim', 'job': 'Dev'},
'emp3': {'name': 'Sam', 'job': 'Dev'}}
D['emp4'] = {'name': 'Max', 'job': 'Janitor'}
print(D)
# Prints {'emp1': {'name': 'Bob', 'job': 'Mgr'},
# 'emp2': {'name': 'Kim', 'job': 'Dev'},
# 'emp3': {'name': 'Sam', 'job': 'Dev'},
# 'emp4': {'name': 'Max', 'job': 'Janitor'}}
Merge Two Nested Dictionaries
Use the built-in update() method to merge the keys and values of one nested dictionary into another. Note that this method blindly overwrites values of the same key if there’s a clash.
D1 = {'emp1': {'name': 'Bob', 'job': 'Mgr'},
'emp2': {'name': 'Kim', 'job': 'Dev'}}
D2 = {'emp2': {'name': 'Sam', 'job': 'Dev'},
'emp3': {'name': 'Max', 'job': 'Janitor'}}
D1.update(D2)
print(D1)
# Prints {'emp1': {'name': 'Bob', 'job': 'Mgr'},
# 'emp2': {'name': 'Sam', 'job': 'Dev'},
# 'emp3': {'name': 'Max', 'job': 'Janitor'}}
Here the ’emp2′ record is updated while ’emp3′ is added to the dictionary.
Remove Nested Dictionary Items
There are several ways to remove items from a nested dictionary.
Remove an Item by Key
If you know the key of the item you want, you can use pop() method. It removes the key and returns its value.
D = {'emp1': {'name': 'Bob', 'job': 'Mgr'},
'emp2': {'name': 'Kim', 'job': 'Dev'},
'emp3': {'name': 'Sam', 'job': 'Dev'}}
x = D.pop('emp3')
print(D)
# Prints {'emp1': {'name': 'Bob', 'job': 'Mgr'},
# 'emp2': {'name': 'Kim', 'job': 'Dev'}}
# get removed value
print(x)
# Prints {'name': 'Sam', 'job': 'Dev'}
If you don’t need the removed value, use the del
statement.
D = {'emp1': {'name': 'Bob', 'job': 'Mgr'},
'emp2': {'name': 'Kim', 'job': 'Dev'},
'emp3': {'name': 'Sam', 'job': 'Dev'}}
del D['emp3']
print(D)
# Prints {'emp1': {'name': 'Bob', 'job': 'Mgr'},
# 'emp2': {'name': 'Kim', 'job': 'Dev'}}
Remove Last Inserted Item
The popitem() method removes and returns the last inserted item as a tuple.
D = {'emp1': {'name': 'Bob', 'job': 'Mgr'},
'emp2': {'name': 'Kim', 'job': 'Dev'},
'emp3': {'name': 'Sam', 'job': 'Dev'}}
x = D.popitem()
print(D)
# Prints {'emp1': {'name': 'Bob', 'job': 'Mgr'},
# 'emp2': {'name': 'Kim', 'job': 'Dev'}}
# get removed pair
print(x)
# Prints ('emp3', {'name': 'Sam', 'job': 'Dev'})
In versions before 3.7, popitem()
would remove a random item.
Iterate Through a Nested Dictionary
You can iterate over all values in a nested dictionary using nested for loop.
D = {'emp1': {'name': 'Bob', 'job': 'Mgr'},
'emp2': {'name': 'Kim', 'job': 'Dev'},
'emp3': {'name': 'Sam', 'job': 'Dev'}}
for id, info in D.items():
print("nEmployee ID:", id)
for key in info:
print(key + ':', info[key])
# Prints Employee ID: emp1
# name: Bob
# job: Mgr
# Employee ID: emp2
# name: Kim
# job: Dev
# Employee ID: emp3
# name: Sam
# job: Dev
Python Example for Beginners
Two Machine Learning Fields
There are two sides to machine learning:
- Practical Machine Learning:This is about querying databases, cleaning data, writing scripts to transform data and gluing algorithm and libraries together and writing custom code to squeeze reliable answers from data to satisfy difficult and ill defined questions. It’s the mess of reality.
- Theoretical Machine Learning: This is about math and abstraction and idealized scenarios and limits and beauty and informing what is possible. It is a whole lot neater and cleaner and removed from the mess of reality.
Data Science Resources: Data Science Recipes and Applied Machine Learning Recipes
Introduction to Applied Machine Learning & Data Science for Beginners, Business Analysts, Students, Researchers and Freelancers with Python & R Codes @ Western Australian Center for Applied Machine Learning & Data Science (WACAMLDS) !!!
Latest end-to-end Learn by Coding Recipes in Project-Based Learning:
Applied Statistics with R for Beginners and Business Professionals
Data Science and Machine Learning Projects in Python: Tabular Data Analytics
Data Science and Machine Learning Projects in R: Tabular Data Analytics
Python Machine Learning & Data Science Recipes: Learn by Coding
R Machine Learning & Data Science Recipes: Learn by Coding
Comparing Different Machine Learning Algorithms in Python for Classification (FREE)
Disclaimer: The information and code presented within this recipe/tutorial is only for educational and coaching purposes for beginners and developers. Anyone can practice and apply the recipe/tutorial presented here, but the reader is taking full responsibility for his/her actions. The author (content curator) of this recipe (code / program) has made every effort to ensure the accuracy of the information was correct at time of publication. The author (content curator) does not assume and hereby disclaims any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from accident, negligence, or any other cause. The information presented here could also be found in public knowledge domains.